PreCalculus Formulas

Sequences and Series:
Binomial Theorem

Binomial Theorem $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$	Arithmetic Last Term $a_{n}=a_{1}+(n-1) d$	Geometric Last Term $a_{n}=a_{1} r^{n-1}$
Find the $r^{\text {th }}$ term	Arithmetic Partial Sum	Geometric Partial Sum
$\binom{n}{r-1} a^{n-(r-1)} b^{r-1}$	$S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)$	$S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)$

Functions:

To find the inverse function. 1. Set function $=y$ 2. Interchange the variables 3. Solve for y	$f^{-1}(x)$ $\frac{\text { Con }}{(f}$ (g)	Composition of functions: $\begin{gathered} (f \circ g)(x)=f(g(x)) \\ (g \circ f)(x)=g(f(x)) \\ \left(f \circ f^{-1}\right)(x)=x \end{gathered}$
Algebra of functions: $(f+g)(x)=f(x)+g(x) ; \quad(f-g)(x)=f(x)-g(x)$ $(f \cdot g)(x)=f(x) \cdot g(x) ;(f / g)(x)=f(x) / g(x), g(x) \neq 0$ Domains:: $D(f(x)) \cap D(g(x))$		
Domain (usable x's) Watch for problems with zero denominators and with negatives under radicals. Range (y's used)	Asymptotes: (vertical) Check to see if the denominator could ever be zero. $f(x)=\frac{x}{x^{2}+x-6}$ Vertical asymptotes at $x=-3$ and $x=2$	Asymptotes: (horizontal) 1. $f(x)=\frac{x+3}{x^{2}-2}$ top power $<$ bottom power means $\mathrm{y}=0$ (z-axis) $4 x^{2}-5$
Difference Quotient $\frac{f(x+h)-f(x)}{h}$ terms not containing a mult. of h will be eliminated.		2. $f(x)=\frac{4 x^{2}-4 x+6}{3 x^{2}+4 x}$ top power $=$ bottom power means $y=4 / 3$ (coefficients) 3. $f(x)=\frac{x^{3}}{x+4}$ None! top power $>$ bottom power

Complex and Polars:

DeMoivre's Theorem:
$[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \bullet \theta+i \sin n \bullet \theta)$
$r=\sqrt{a^{2}+b^{2}}$
$\theta=\arctan \frac{b}{a}$

$$
\begin{array}{l|l}
x=r \cos \theta & a+b i \\
y=r \sin \theta & i=\sqrt{-1} \\
& i^{2}=-1
\end{array}
$$

Determinants:

$\left|\begin{array}{ll}3 & 5 \\ 4 & 3\end{array}\right|=3 \cdot 3-5 \cdot 4$
Use your calculator for 3×3 determinants.

Cramer's Rule:
$a x+b y=c$
$d x+e y=f$

$$
\frac{1}{\left|\begin{array}{ll}
a & b \\
d & e
\end{array}\right|}\left(\left|\begin{array}{ll}
c & b \\
f & e
\end{array}\right|,\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right|\right)
$$

Also apply Cramer's rule to 3 equations with 3 unknowns.

Trig:

Reference Triangles:

$\sin \theta=\frac{o}{h} ; \quad \cos \theta=\frac{a}{h} ; \quad \tan \theta=\frac{o}{a}$
BowTie
$\csc \theta=\frac{h}{o} ; \quad \sec \theta=\frac{h}{a} ; \quad \cot \theta=\frac{a}{o}$

Analytic Geometry:

Circle $(x-h)^{2}+(y-k)^{2}=r^{2}$ Remember "completing the square" process for all conics.		Ellipse $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$ larger denominator \rightarrow major axis and smaller denominator \rightarrow minor axis	$\mathrm{c} \rightarrow$ focus length where major length is hypotenuse of right triangle. Latus rectum lengths from focus are b^{2} / a	Eccentricity: $e=0$ circle $0<e<1$ ellipse $e=1$ parabola $e>1$ hyperbola	Find $\mathrm{P}(1)$: Assume $\mathrm{P}(\mathrm{k})$ is true: Show $\mathrm{P}(\mathrm{k}+1)$ is true:
Parabola $\begin{aligned} & (x-h)^{2}=4 a(y-k) \\ & (y-k)^{2}=4 a(x-h) \end{aligned}$	vertex to focus $=$ a, length to directrix $=a$, latus rectum length from focus $=2 a$	Hyperbola $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ Latus length from focus b^{2} / a	$\mathrm{a} \rightarrow$ transverse axis $\mathrm{b} \rightarrow$ conjugate axis $\mathrm{c} \rightarrow$ focus where c is the hypotenuse. asymptotes needed	Rate of Growth/Decay: $\quad y=y_{0} e^{k t}$ $\mathrm{y}=$ end result, $\mathrm{y}_{0}=$ start amount, Be sure to find the value of k first.	

Polynomials:

Remainder Theorem: Substitute into the expression to find the remainder. $[(x+3)$ substitutes -3$]$	Synthetic Division Mantra: "Bring down, multiply and add, multiply and add..." [when dividing by $(x-5)$, use +5 for synthetic division]
Descartes' Rule of Signs 1. Maximum possible \# of positive roots \rightarrow number of sign changes in $f(x)$ 2. Maximum possible \# of negative roots \rightarrow number of sign changes in $f(-x)$	Analysis of Roots P N C Chart * all rows add to the degree * complex roots come in conjugate pairs * product of roots - sign of constant (same if degree even, opposite if degree odd) * decrease P or N entries by 2

Induction:

Find $\mathrm{P}(1)$:
Assume P(k) is

Show $P(k+1)$ is true:

Rate of Growth/Decay: $\quad y=y_{0} e^{k t}$
$y=$ end result, $y_{0}=$ start amount,
Be sure to find the value of k first.

Remander Theorem expression to find the remainder.
$[(x+3)$ substitutes -3$]$

Signs

of positive roots \rightarrow
number of sign changes
in $f(x)$
2. Maximum possible \# of negative roots \rightarrow in $f(-x)$

> Depress equation
> $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
(also use calculator to examine roots)

Upper bounds:
All values in chart are +
Lower bounds:
Values alternate signs No remainder: Root

Sum of roots is the coefficient of second term with sign changed.

Product of roots is the constant term (sign changed if odd degree, unchanged if even degree).

Synthetic Division Mantra: "Bring down, multiply and add, multiply and add..." [when dividing by $(x-5)$,	$\underline{\text { Depress equation }}$		
use +5 for synthetic division]	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$		
Analysis of Roots P N C Chart * all rows add to the examine calculator to degree	Upper bounds: *complex roots come in conjugate pairs		
* product of roots - sign			
of constant (same if			
degree even, opposite if if are			
degree odd)			
* decrease P or N entries			
by 2		\quad	Lower bounds:
:---			
Values alternate signs No remainder: Root			
Sum of roots is the coefficient of second term with sign changed.			
Product of roots is the constant term (sign changed if odd degree, unchanged if even degree).			

Far-left/Far-right Behavior of a Polynomial The leading term $\left(\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{x}^{\boldsymbol{n}}\right)$ of the polynomial determines the far-left/far-right behavior of the graph according to the following chart. ("Parity" of $n \rightarrow$ whether n is odd or even.)

