PreCalculus Formulas

$\frac{\text{Binomial Theorem}}{(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k}$	Arithmetic Last Term $a_n = a_1 + (n-1)d$	Geometric Last Term $a_n = a_1 r^{n-1}$		
Find the r^{th} term	Arithmetic Partial Sum	Geometric Partial Sum		
$\binom{n}{r-1}a^{n-(r-1)}b^{r-1}$	$S_n = n \left(\frac{a_1 + a_n}{2} \right)$	$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$		

Complex and Polars:

DeMoivre's Theorem:

 $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n \cdot \theta + i\sin n \cdot \theta)$

$$r = \sqrt{a^2 + b^2} \qquad x = r\cos\theta$$

$$\theta = \arctan\frac{b}{a} \qquad y = r\sin\theta$$

$$(r,\theta) \to (x,y)$$

$$a + bi$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

Functions:

To find the <u>inverse function</u>: $f^{-1}(x)$

- 1. Set function = y
- 2. Interchange the variables
- 3. Solve for y

Composition of functions:

 $(f \circ g)(x) = f(g(x))$

 $(g \circ f)(x) = g(f(x))$

$$(f \circ f^{-1})(x) = x$$

Algebra of functions: (f+g)(x) = f(x) + g(x); (f-g)(x) = f(x) - g(x)

$$(f \bullet g)(x) = f(x) \bullet g(x); \quad (f / g)(x) = f(x) / g(x), \ g(x) \neq 0$$

Domains:: $D(f(x)) \cap D(g(x))$

Domain (usable x's)

Watch for problems with zero denominators and with negatives under radicals.

Range (y's used)

Difference Quotient

$$\frac{f(x+h)-f(x)}{h}$$

terms not containing a mult. of h will be eliminated

Asymptotes: (vertical)

Check to see if the denominator could ever be zero.

$$f(x) = \frac{x}{x^2 + x - 6}$$

Vertical asymptotes at x = -3 and x = 2

Asymptotes: (horizontal)

1.
$$f(x) = \frac{x+3}{x^2-2}$$

top power < bottom power means y = 0 (z-axis)

$$2. \quad f(x) = \frac{4x^2 - 5}{3x^2 + 4x + 6}$$

top power = bottom power means y = 4/3

(coefficients)

3.
$$f(x) = \frac{x^3}{x+4}$$
 None!

top power > bottom power

Determinants:

$$\begin{vmatrix} 3 & 5 \\ 4 & 3 \end{vmatrix} = 3 \cdot 3 - 5 \cdot 4$$
 Use your calculator for 3x3 determinants.

Cramer's Rule:

$$ax + by = c$$

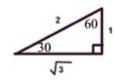
$$dx + ey = f$$

$$\begin{vmatrix} 1 \\ a & b \\ d & e \end{vmatrix} \begin{pmatrix} c & b \\ f & e \end{vmatrix}, \begin{vmatrix} a & c \\ d & f \end{vmatrix}$$

Also apply Cramer's rule to 3 equations with 3 unknowns

Trig:

Reference Triangles:



$$\sin \theta = \frac{o}{h}$$
; $\cos \theta = \frac{a}{h}$; $\tan \theta = \frac{o}{a}$ BowTie
 $\csc \theta = \frac{h}{h}$: $\sec \theta = \frac{h}{h}$: $\cot \theta = \frac{a}{h}$

Analytic Geometry:					Induction:	
Circle $(x-h)^2 + (y-k)^2 = r^2$ Remember "completing the square" process for all conics.		Ellipse $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ larger denominator \rightarrow major axis and smaller denominator \rightarrow minor axis	 c → focus length where major length is hypotenuse of right triangle. Latus rectum lengths from focus are b²/a 	Eccentricity: e = 0 circle 0 < e < 1 ellipse e = 1 parabola e > 1 hyperbola	Find P(1): Assume P(k) is true: Show P(k+1) is true:	
$\frac{\text{Parabola}}{(x-h)^2} = 4a(y-k)$ $(y-k)^2 = 4a(x-h)$	vertex to focus = a, length to directrix = a, latus rectum length from focus = 2a	$\frac{\frac{\text{Hyperbola}}{(x-h)^2}}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Latus length from focus b ² /a	a→transverse axis b→conjugate axis c→focus where c is the hypotenuse. asymptotes needed	$y = \text{end result}, \ y_0 =$	Rate of Growth/Decay: $y = y_0 e^{kt}$ $y = \text{end result}, y_0 = \text{start amount},$ Be sure to find the value of k first.	

$(y-k)^2 = 4a(x-h)$	rectum length from focus = 2a				$y = \text{end result}, y_0 = \text{start amount},$ Be sure to find the value of k first.		
Polynomials: Remainder Theorem: Substitute into the expression to find the remainder. [$(x + 3)$ substitutes -3]	Synthetic Division Mantra: "Bring down, multiply and add, multiply and add"	Depress equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (class was calculater to	Far-left/Far-right Behavior of a Polynomial The leading term $(a_n x^n)$ of the polynomial determines the far-left/far-right behavior of the graph according to the following chart. ("Parity" of $n \rightarrow$ whether n is odd or even.)				
	[when dividing by (<i>x</i> - 5), use +5 for synthetic division]	(also use calculator to examine roots)	$a_n x^n$		n is even (same as right)	n is odd (opposite right)	
Descartes' Rule of Signs 1. Maximum possible # of positive roots \rightarrow number of sign changes in $f(x)$ 2. Maximum possible # of negative roots \rightarrow number of sign changes in $f(-x)$	Analysis of Roots P N C Chart * all rows add to the degree * complex roots come in conjugate pairs * product of roots - sign of constant (same if degree even, opposite if degree odd) * decrease P or N entries by 2	Upper bounds: All values in chart are + Lower bounds: Values alternate signs No remainder: Root Sum of roots is the coefficient of second term with sign changed. Product of roots is the constant term (sign changed if odd degree, unchanged if even degree).	HAND BEHAVIOR or Leading Coefficient Test	$a_{n} > 0$ $a_{n} < 0$	always positive	negative $x < 0$ positive $x > 0$ positive $x < 0$ negative $x < 0$ negative $x < 0$	